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BHエントロピー，第二法則，その先へ

物質

BH

ブラックホール系のエントロピー 

S ?=
Area
4G

+ 𝒪(G0)

ブラックホール熱力学第二法則 
（証明：エネルギー条件）ΔS ≥ 0

ミクロな状態数

マクロ系の普遍的性質

BHを平衡熱力学の立場で理解

BHの非平衡熱力学は作れるか？　→　ゆらぎの定理　
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重力系のゆらぎの定理は未開拓

ブラックホール＋外側の物質系
[Iso, Okazawa, Zhang (2010)]

[Iso, Okazawa (2011)]
based on [Massar, Parentani (2000)]

σ =
Δ(Area)

4GN
+ ΔSmatter WKB, Born, Markov, …

他にも，重力が背景の場合が調べられている

動的な重力系で一般論が作れるか？

p̃[σ = − A] = e−Ap[σ = A]

ゆらぎの定理：エントロピーが減る過程の希少度
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AdS/CFTで重力系のゆらぎの定理へ

（量子論で証明）

[Tasaki (2000)]

t
AdS重力+物質

 dimd + 1

r

M

t

 dimd ∂M

CFT

=
GKPW

AdSの言葉に書き換え

Tasaki-Crooksゆらぎの定理

p̃(−W) = e−β(W−ΔF)p(W)
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1. （量子論側）仕事分布がゆらぎの定理を満たす 

2. （重力側へ）仕事分布をAdS重力側で計算 

3. 仕事分布は重力の（量子）力学を知る

5

AdS/CFTで量子重力の 
ゆらぎの定理に迫る
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AdS/CFTで量子重力の 
ゆらぎの定理に迫る
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仕事：二点測定でのエネルギー変化

の測定H(0)

|Et
n⟩

の測定H(t)

|E0
m⟩

U |E0
m⟩

U = Te−i ∫t
0 duH(u)

e−βH(0)/Z(0)

pm→n = |⟨Et
n |U |E0

m⟩ |2 e−βE0
m/Z(0)

実現する確率

Wm→n = Et
n − E0

m

ここでの仕事の定義

[Tasaki (2000)]
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仕事分布 = 仕事 を獲得する確率W

・・・

Wm→n = Et
n − E0

m

pm→n = |⟨Et
n |U |E0

m⟩ |2 e−βE0
m /Z(0)仕事分布

p(W) := ∑
m,n

pm→nδ(W − Wm→n)

等価な量：特性関数

G(u) := ∫ dW eiuWp(W) = ⟨eiuW⟩
モーメント  
を全て含む

⟨Wn⟩

[Tasaki (2000)]

[Talkner, Hänggi (2007)]
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特性関数はSchwinger-Keldysh

u
e−iuH(0) U

U† eiuH(t)
e−βH(0)

t u + t
UU

p(W ) := ∑
m,n

pm→nδ(W − Wm→n)G(u) := ∫ dW eiuWp(W)

= ∑
m,n

eiu(Et
n−E0

m) |⟨Et
n |U |E0

m⟩ |2 e−βE0
m/Z(0)

= Tr [U†eiuH(t)Ue−iuH(0)e−βH(0)]/Z(0)

U = Te−i ∫t
0 duH(u)

G(u) = ∫ 𝒟φ eiSCFT[φ;C]
C

H(u) = HCFT + ∫ d ⃗x λ(u, ⃗x)O( ⃗x)

[Talkner, Hänggi (2007)]
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ゆらぎの定理では逆過程も必要

W̃m→n = Ẽt
n − Ẽ0

m

= E0
n − Et

m

逆過程での仕事の測定H̃(t)

の測定H̃(0)

| Ẽ0
m⟩

Ũ = ΘU†Θ†

| Ẽ0
m⟩

| Ẽt
n⟩

e−βH̃(0)/Z̃(0)

H̃(u) = ΘH(t − u)Θ†

Ũ | Ẽ0
m⟩

仕事分布

p̃(W) := ∑
m,n

p̃m→nδ(W − W̃m→n)

を左の確率としてp̃m→n

等価な量：特性関数

G̃(u) := ∫ dW eiuWp̃(W) = ⟨eiuW⟩

：CPT演算子Θ [Tasaki (2000)]
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G̃(u) = ∫ 𝒟φ eiSCFT[φ;C̃]

ゆらぎの定理では逆過程も必要
C̃

u
U e−iuH(t)

eiuH(0) U†
e−βH(t)

t u + t

• の性質によって経路が変更 

• ここでの  , は順過程と同じ
Θ

H(u) U

U = Te−i ∫t
0 duH(u)

u
e−iuH(0) U

U† eiuH(t)
e−βH(0)

t u + t
UU

C H(u) = HCFT + ∫ d ⃗x λ(u, ⃗x)O( ⃗x)

[Talkner, Hänggi (2007)]
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ゆらぎの定理：第二法則を破る過程の希少度

p̃(−W) = e−σp(W)
Tasaki-Crooksゆらぎの定理

σ = β(W − ΔF) eβΔF := Z(0)/Z̃(0) = Z(0)/Z(t)

等価な表現
G̃(−u + iβ) = e−βΔFG(u)
（証明は簡単な代数）

積分系ゆらぎの定理 ⟨e−σ⟩ = 1

1 = ⟨e−σ⟩ ≥ e−⟨σ⟩ ⟹ Wdiss := ⟨W⟩ − ΔF ≥ 0
Jensen不等式から第二法則
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エントロピー生成：余分な仕事

の測定H(0)

|Et
n⟩

の測定H(t)

|E0
m⟩

U |E0
m⟩

U = Te−i ∫t
0 duH(u)

e−βH(0)/Z(0)

仕事 を付与W

熱浴をつけて熱 が逃げる 
（仕事なし）

Q
熱平衡化

2つの平衡状態間で必要な最小仕事： 

（等温準静的）ΔF

エントロピー生成 = 余分な仕事
σ := β(W − ΔF)

= β(ΔE + Q − ΔF)
= ΔSthermal + βQ

において…p̃(−W) = e−σp(W)
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まとめ：仕事分布がゆらぎの定理を満たす

仕事分布

p(W) := ∑
m,n

pm→nδ(W − Wm→n)

Wm→n

確率 pm→nm

n

H(u)

u
e−iuH(0) U

U† eiuH(t)

t u + t
UU

G(u) := ⟨eiuW⟩ = ∫ 𝒟φ eiSCFT[φ;C]

p̃(−W) = e−σp(W)

Tasaki-Crooksゆらぎの定理

特性関数

σ := β(W − ΔF) = ΔSthermal + βQ

エントロピー生成 = 余分な仕事
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1. （量子論側）仕事分布がゆらぎの定理を満たす 

2. （重力側へ）仕事分布をAdS重力側で計算 

3. 仕事分布は重力の（量子）力学を知る

15

AdS/CFTで量子重力の 
ゆらぎの定理に迫る
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AdS/CFT：経路積分が等価
AdS/CFT対応 

∫ 𝒟ϕ eiSCFT[∂M;ϕ]+i ∫ ddx J(x)OΔ(x) = eiSAdS[M;Φcl]
Φ∼rΔ−dJ

t
AdS重力+物質

 dimd + 1

t

 dimd ∂M

r

M

はかなり自由：SK経路、レプリカ多様体などM
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特性関数にAdS/CFT辞書使える

u
λ(0) λ(τ − u)

λ(τ) λ(t)
λ(0)

t u + t

∂M

∫ 𝒟ϕ eiSCFT[∂M;ϕ]+i ∫ ddx λ(x)O(x) = eiSAdS[M;Φcl]
Φ∼rΔ−dλ

τ

G(u) := ⟨eiuW⟩ = H(u) = HCFT + ∫ d ⃗x λ(u, ⃗x)O( ⃗x)

0
β

λ(0)

λ(t)
b

u + t

0

t
λ(τ)

u + t

0
λ(0)

u λ(τ − u)
f

M
バルクのSchwinger-Keldyshは[van Rees (2009)]

BH相の場合
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ゆらぎの定理はAdS/CFTが保証

p̃(−W) = e−σp(W)
（AdSに翻訳した）Tasaki-Crooksゆらぎの定理

σ = β(W − ΔF) eβΔF := Z(0)/Z̃(0) = Z(0)/Z(t)

この関係は境界理論で証明済

Fourier trした が 
バルクで計算可能 

（ も同様のバルクSK）

G(u)

G̃(u)

通常通りEuclid重力で計算
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例：自由スカラー場 on BTZ
ソースの2次までの摂動論

SAdS = −
1
2 ∫ d3x [(∂Φ)2 − Δ(2 − Δ)Φ2] + Sct

ds2 = − (r2 − r2
+)dt2 +

dr2

r2 − r2
+

+ r2dθ2

0
β

λ(0)

λ(t)
b

u + t

0

t
λ(τ)

u + t

0
λ(0)

u λ(τ − u)
f

M

• 計量は で解析接続 

• が連続 

• も "連続"

t
Φ
∂tΦ

接続の処方

[Skenderis, van Rees (2008)]

は 上のon-shell作用G(u) M
は無限でも周期的でも可θ
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"サイクリック過程" の場合：λ(0) = λ(t) ⇒ ΔF = 0

例：自由スカラー場 on BTZ

p(W) = p̃(W)

= (1 − q)δ(W) + const ⋅ eβW/2 ∫
dk
2π

λW,kΓ(γW,k)Γ(W,−k)
2

のFourier trλ(τ, x) γω,k =
Δ
2

+ i
ω + k
2r+

q = ∫W≠0
dW p(W)

p̃(−W) = e−βWp(W)

成立確認！
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まとめ：仕事分布をAdS側で計算

u
λ(0) λ(τ − u)

λ(τ) λ(t)
λ(0)

t u + t

∂M

G(u) = ∫ 𝒟ϕ eiSCFT[∂M;ϕ]+i ∫ ddx λ(x)O(x) = eiSAdS[M;Φcl]
Φ∼rΔ−dλ

0
β

λ(0)

λ(t)
b

u + t

0

t
λ(τ)

u + t

0
λ(0)

u λ(τ − u)
f

M

BH相の場合

p̃(−W) = e−σp(W)

ゆらぎの定理がバルクの言葉に

（証明は境界の量子論）

仕事分布の辞書
p(W)
F.T.
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1. （量子論側）仕事分布がゆらぎの定理を満たす 

2. （重力側へ）仕事分布をAdS重力側で計算 

3. 仕事分布は重力の（量子）力学を知る
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AdS/CFTで量子重力の 
ゆらぎの定理に迫る
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仕事分布のバルクでの意味を見出したい

|Et
n⟩

|E0
m⟩

U |E0
m⟩

e−βH(0)/Z(0)

CFT AdS

SKを通して は計算可能だが，SKは物理的な時空ではないp(W)

HH状態？

EoW？

EoW？ SKで計算した は 
物理的過程の情報 
を持つはず

p(W)

に着目して考える⟨W⟩
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はいつもの期待値と一緒⟨W⟩

⟨W⟩ = ∫ dW Wp(W) = Tr [H(t)Uρ0U†] − Tr [H(0)ρ0]
簡単な代数によって

・・・

⟨W⟩
ρ0 = e−βH(0)/Z(0)

Uρ0U†

バルク描像が明確
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はバルクの初期値問題の計量が知る⟨W⟩

・・・

ρ0 = e−βH(0)/Z(0)

Uρ0U†

δgμν ∋ ⟨W⟩

H(u) = HCFT + ∫ d ⃗x λ(u, ⃗x)O( ⃗x)

平均

BH

λ

AdS/CFT
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例：自由スカラー場 on BTZ
ソースの2次までの摂動論

SAdS = −
1
2 ∫ d3x [(∂Φ)2 − Δ(2 − Δ)Φ2] + Sct

ds2 = − (r2 − r2
+)dt2 +

dr2

r2 − r2
+

+ r2dθ2

p(W) = p̃(W)

= (1 − q)δ(W) + const ⋅ eβW/2 ∫
dk
2π

λW,kΓ(γW,k)Γ(W,−k)
2

"サイクリック過程" の場合：λ(0) = λ(t) ⇒ ΔF = 0

⇒ ⟨W⟩ ∝ ∫
dkdW
(2π)2

λW,kΓ(γW,k)Γ(W,−k)
2

W sinh
βW
2
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初期値問題の計量から読み取るエネルギー変化

 (エネルギー期待値の変化）δgμν ∋ ⟨W⟩

BH

λ

例：自由スカラー場 on BTZ

[Shigemura, Shimizu, Sugishita,  
Takeda, Yoda (2024)] 

で実行済 
→ 一致する!

SKのプローブスカラーの計算が， 
初期値問題の重力のダイナミクスを部分的に知っている
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まとめ：仕事分布は重力の（量子）力学を知る

・・・

ρ0 = e−βH(0)/Z(0)

Uρ0U†

平均

・・・
unraveling?

BH

λ

AdS/CFT

δgμν ∋ ⟨W⟩
SKの計算と一致
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1. （量子論側）仕事分布がゆらぎの定理を満たす 

2. （重力側へ）仕事分布をAdS重力側で計算 

3. 仕事分布は重力の（量子）力学を知る

29

AdS/CFTで量子重力の 
ゆらぎの定理に迫る
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仕事分布は量子重力の何を知るか？

• 仕事分布から量子重力を読み取る 

- も初期値問題に関係？ 

- のバルクでの一般公式？ 
（幾何学量で書けるとか…)

⟨W2⟩
p(W)

• 他の具体例でゆらぎの定理のチェック 
- 異なるバルク模型 
- 非サイクリックの場合

• ゆらぎの定理の他のバージョン 
- 複合系（double-trace deformation） 

- 開放系（holographic Lindblad）


