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Lindblad力学の 
ホログラフィック双対

1
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石井孝典氏との共同研究[arXiv:2504.17320]に基づく
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AdS/CFTで開放量子系を予言

−iβ

t

= LL

E

ESkenderis, van Rees (2008)

• クォークのブラウン運動をバルクの弦で de Boar et.al. (2008) 
Son, Teaney (2009)

• Schwinger-Keldysh形式 in  AdS/CFT

• 開放スカラー場理論の有効作用 Jana, Loganayagam, Rangamani (2020)

熱浴をホログラフィックCFTとした開放系

ホログラフィックCFT自体を開放量子系にしたい
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Lindblad＝AdS重力＋ホワイトノイズBC
通常のAdS/CFT

J

⟨O⟩J

= EOM

Φ ∼
r→∞

rΔ−dJ·ρ = − i[H, ρ]

=

Φ ∼
r→∞

rΔ−d(J + λ)

：ホワイトノイズλ

EOM

Lindblad力学の場合

J

⟨O⟩J

·ρ = − i[H, ρ] + γ [OρO† −
1
2

{O†O, ρ}]
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1. 開放量子系のLindblad方程式を、経路積分で 

2. 経路積分を変形し、GKPWからバルクへ 

3. 自由スカラー場 on AdS3はCFTの結果を再現
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Lindblad＝AdS重力＋ホワイトノイズBC
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Lindblad＝開放系のマスター方程式

孤立系との違い

·ρ = − i[H, ρ] + ∑
i

[LiρL†
i −

1
2

{L†
i Li, ρ}] =: ℒρ

• 系＋熱浴から熱浴をトレースアウトして、近似 

- Born近似：  

- Markov近似： は だけで決まる 

- … 

• はCPTP写像の一般形

ρtot ≃ ρsys ⊗ e−βHbath

ρ(t + Δt) ρ(t)

ρ(t) = e(t−s)ℒρ(s)

（しばらく、1次元量子系を仮定）
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考えるべき（時間順序）相関関数は？

⟨TO(tn)⋯O(t1)⟩ = Tr [Oe(tn−tn−1)ℒO⋯Oe(t1−t0)ℒρ(t0)]
·ρ = − i[H, ρ] + ∑

i
[LiρL†

i −
1
2

{L†
i Li, ρ}] =: ℒρ

なぜ？　→　系＋熱浴から出発する
⟨TO(tn)⋯O(t1)⟩ := Trtot [Oe−i(tn−tn−1)HtotO⋯Oe−i(t1−t0)Htotρtot(t0)eitnHtot]

≃ Trsys [Oe(tn−tn−1)ℒO⋯Oe(t1−t0)ℒρsys(t0)]
Lindbladの導出に使った近似 cf) Gullo et. al. (2014)

非時間順序も同様
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この相関関数を与える生成汎関数は？

Z[J] := ∫ 𝒟x e
iS[C;x]+ ∫∞

0 dt(iJOf + Lf L*b −
|Lf |2

2 − |Lb |2
2 )

·ρ = − i[H, ρ] + ∑
i

[LiρL†
i −

1
2

{L†
i Li, ρ}] =: ℒρ

が1種類で、Li ρini = |0⟩⟨0 |
∞iJOf − |Lf |

2 /2

t

−i∞

i∞

− |Lb |2 /2 Lf L*b

C

Forward

Backward

Lf := L[xf(t)]

• 虚時間方向は真空を作る 

• Forwardは の時間発展 

• Backwardは の時間発展 

• は の を作るために導入 

• 真空以外はソース入れるなど…

|0⟩
⟨0 |

J O ⟨TO(tn)⋯O(t1)⟩

e.g. [Strunz (1997)]
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以下ではCFTの場合

Z[J] := ∫ 𝒟ϕ eiSCFT[C;ϕ]+ ∫∞
0 dt ∫ dd−1 ⃗x(iJOf − γ

2 (Of − Ob)2)

ただし最も簡単なケース： 

• （添え字 が空間座標 ） 

• は実スカラープライマリー場 

• ジャンプ演算子の相関関数に着目

Li → γO[ϕ( ⃗x)] i ⃗x

O( ⃗x) = O[ϕ( ⃗x)]

∞iJOf − O2
f /2

t

−i∞

i∞

−O2
b /2 OfOb

C

Forward

Backward

·ρ = − i[H, ρ] + γ∫ dd−1 ⃗x [O( ⃗x)ρO( ⃗x) −
1
2

{O( ⃗x)2, ρ}]
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標準的なAdS/CFT：GKPW辞書
AdS/CFT対応 

∫ 𝒟ϕ eiSCFT[∂M;ϕ]+i ∫ ddx J(x)OΔ(x) = eiSAdS[M;Φcl]
Φ∼rΔ−dJ

t
AdS重力+物質

 dimd + 1

t

 dimd ∂M

r

M

はかなり自由：SK経路、レプリカ多様体などM
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をGKPWが使える形へZ[J]
Lindblad力学の場合

Z[J] := ∫ 𝒟ϕ eiSCFT[C;ϕ]+ ∫∞
0 dt ∫ dd−1 ⃗x(iJOf − γ

2 (Of − Ob)2)

Z[J] = ∫ 𝒟λ [∫ 𝒟ϕ eiSCFT[C;ϕ]+ ∫ [i(J + λ)Of − iλOb]] e− 1
2γ ∫ λ2

∞(J + λ)Of

λOb

C λ ∼ 𝒩(0,γ)

Hubbard–Stratonovich変換
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GKPWを使ってバルクへ

Z[J] = ∫ 𝒟λ [∫ 𝒟ϕ eiSCFT[C;ϕ]+ ∫ [i(J + λ)Of − iλOb]] e− 1
2γ ∫ λ2

= ∫ 𝒟λe− 1
2γ ∫∞

0 dt ∫ dd−1 ⃗x λ(t, ⃗x)2 [eiSAdS[M;Φ]]Φf∼rΔ−d(J+λ), Φb∼rΔ−dλ

上でいつもの古典場の計算M

最後に についてガウス平均λ

∞

t

−i∞

i∞

C

Forward

Backward

J + λ

λ
λ

Backward

i∞

−i∞

∞

Forward

J
M

CFT AdS

∂M ≅ C × [ ⃗x − directions]
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Lindblad力学のホログラフィック双対

Tr [Oe(tn−tn−1)ℒO⋯Oe(t1−t0)ℒρ(t0)]

= ⟨e−iS[M;Φ] 1
i

δ
δJ(tn)

⋯
1
i

δ
δJ(tn)

eiS[M;Φ]

J=0
⟩

λ

Z[J] := ∫ 𝒟ϕ eiSCFT[C;ϕ]+ ∫∞
0 dt ∫ dd−1 ⃗x(iJOf − γ

2 (Of − Ob)2)

= ∫ 𝒟λ e− 1
2γ ∫∞

0 dt ∫ dd−1 ⃗x λ(t, ⃗x)2 [eiSAdS[M;Φ]]Φf∼rΔ−d(J+λ), Φb∼rΔ−dλ

Lindblad＝AdS重力＋ホワイトノイズBC

λ

i∞

−i∞

∞
J

M

·ρ = − i[H, ρ] + γ∫ dd−1 ⃗x [O( ⃗x)ρO( ⃗x) −
1
2

{O( ⃗x)2, ρ}]
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プローブ自由スカラー場 on AdS3

SAdS = −
1
2 ∫ d3x [(∂Φ)2 − Δ(2 − Δ)Φ2] + Sbdy

ds2 = − (r2 + 1)dt2 +
dr2

r2 + 1
+ r2dθ2

i∞

−i∞

t → ∞
J + λ

t = 0
λ

E1

E2

F

B

dΦE1

d(−iτ)
=

dΦF

dt

dΦE2

d(−iτ)
=

dΦB

dt

dΦF

dt
=

dΦB

dt

• を固定してそれぞれでEOMを解く 

• 場を「滑らかに」繋ぐ
λ に代入して 

積分を実行
eiSAdS[M;Φ]

λ
Skenderis, van Rees (2008)
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AdSからCFTへの予言：１・２点相関関数

１点相関関数
⟨O(t, θ)⟩ = 0

２点相関関数（ ）t2 ≥ t1
⟨O(t2, θ2)O(t1, θ1)⟩ = F(t2 − t1, θ2 − θ1)

−γ∫
t1

0
dt∫ dθ [F(t1 − t, θ1 − θ) − F(t − t1, θ − θ1)]

× [F(t2 − t, θ2 − θ) − F(t − t2, θ − θ2)]

F(t, θ) ∝ [cos(t − iϵ) − cos θ]−Δ

ユニタリ部分

非ユニタリ部分
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CFTの摂動計算と整合
今回の辞書が正しいか、ラージ のCFTで確認したN

⟨TO(x2)O(x1)⟩ = ∫ 𝒟ϕ Of(x2)Of(x1)eiSCFT[C;ϕ]− γ
2 ∫ d2x(Of−Ob)2

≃ ⟨TO(x2)O(x1)⟩0 −
γ
2 ∫x

⟨Of(x2)Of(x1)(Of(x) − Ob(x))2⟩0

は より右へ 

（ ）同士は（反）時間順序
f b

f b
４点をWickの定理で２点の積へと分解 

→　バルクの結果に一致

∞−O2
f /2

t

−i∞

i∞

−O2
b /2 OfOb

C

Forward

Backward

バルクのプローブ近似　＝　CFTのO(γ1)
（AdSの近傍） （真空の近傍）
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Lindblad力学のホログラフィック双対

Tr [Oe(tn−tn−1)ℒO⋯Oe(t1−t0)ℒρ(t0)]

= ⟨e−iS[M;Φ] 1
i

δ
δJ(tn)

⋯
1
i

δ
δJ(tn)

eiS[M;Φ]

J=0
⟩

λ

Z[J] := ∫ 𝒟ϕ eiSCFT[C;ϕ]+ ∫∞
0 dt ∫ dd−1 ⃗x(iJOf − γ

2 (Of − Ob)2)

= ∫ 𝒟λ e− 1
2γ ∫∞

0 dt ∫ dd−1 ⃗x λ(t, ⃗x)2 [eiSAdS[M;Φ]]Φf∼rΔ−d(J+λ), Φb∼rΔ−dλ

Lindblad＝AdS重力＋ホワイトノイズBC

λ

i∞

−i∞

∞
J

M

·ρ = − i[H, ρ] + γ∫ dd−1 ⃗x [O( ⃗x)ρO( ⃗x) −
1
2

{O( ⃗x)2, ρ}]
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応用先募集中

• 半古典にしてBH形成を見る 

- 純粋状態　→　混合状態 

- JT + スカラーで確認中（with 足立・長谷川・石井） 

• 非Markovにする（計算ノートはある） 

- 再コヒーレンス vs Page曲線 

• 現実への応用 
- ホログラフィック超伝導 
- Lindblad SYKの再現


