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Abstract

The similarities between Witten’s open SFT and Chern-Simons theory 

Any other correspondence? 

Introduction of the notion of the manifold to KBc sector

• Classical solutions on the manifold 
• Wilson lines on the manifold
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Open string field

Dynamical variable Ψ
X̂μ(0,σ) |X⟩ = Xμ(σ) |X⟩

Φ(X(σ)) = ⟨X |Φ⟩ A state of world-sheet BCFT

|Φ⟩ = OΦ(0,0) |0⟩State-operator correspondence
OΦ(0,0)

z

z̃ =
2
π

arctan z sliver frame

Õ Φ(0,0)

z̃

: A composite operator in sliver frameΨ

ghost number 1
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One string vertex (Witten’s integral)

One string vertex

z̃
=∫ A =

ghost number 3

Correlation function with identification of left- and right-half string
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Witten’s action

Witten’s action 

                

Propagator 

Vertex

S = −
1
g2 ∫ ( 1

2
ΨQBΨ +

1
3

Ψ3)
ghost number 3

BRST operator

1
2

ΨQBΨ

1
3

Ψ3
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Classical solutions

Witten’s action

S = −
1
g2 ∫ ( 1

2
ΨQBΨ +

1
3

Ψ3)
EOM

QBΨ + Ψ2 = 0

Finding a classical solution = Going to another perturbative vacuum 
based on the corresponding BCFT

ex) Creation and annihilation of D branes
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KBc sector

The definitions of  and K, B c

K := ∫
i∞

−i∞

dz̃
2πi

T(z̃), B := ∫
i∞

−i∞

dz̃
2πi

b(z̃), c := cz̃(0) =
2
π

cz(0)

(in sliver frame)

KBc algebra

[K, B] = B2 = c2 = 0, {B, c} = 1, ( [K, c] = − ∂c )

QBK = 0, QBB = K, QBc = cKc
Closed

EOM 
QBΨ + Ψ2 = 0

Classical solutions have been found in KBc sector:  
→  Universal solution

Ψ = F(K, B, c)
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The similarities between SFT and CS theory

Witten’s action

S = −
1
g2 ∫ ( 1

2
ΨQBΨ +

1
3

Ψ3)
Chern-Simons action

Correspondence

QB ↔ d

SCS ∼ ∫M ( 1
2

AdA +
1
3

A3)

∫ ↔ ∫M

form↔ghost

Ψ → V−1(QB + Ψ)V ↔ A → g−1(d + A)g

Any other correspondence?
[H.Hata, DT (2021)]

Yes (restricting to KBc sector)

gauge transformation
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KBc interior product 1/2

Finding the interior product  in KBc sectorI

Assumptions 

•  has ghost number   

•  holds KBc algebra 

 

•

I −1

I

I(AB) = (IA)B + (−1)|A|A(IB)

form↔ghost

Same as the ordinary 
Interior product

ex)  for I({B, c}) = I(1) {B, c} = 1

The consistency with  
KBc algebra
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KBc interior product 2/2

Then,  is characterized by a two-component function of ,  I K X = (X1(K), X2(K))

IXK = iBX1, IXB = 0, IXc =
X2

K
+ [ X2

K
, Bc]

The same relations as the ordinary one

I2
X = 0, {IX, IY} = 0, IαX+βY = αIX + βIY

 : KBc tangent vectorX = (X1(K), X2(K))
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KBc Lie derivative
Lie derivative

LX := − i{QB, IX}

The ordinary one

ℒX = {d, IX}

The same relations as the ordinary one with d ↔ QB

[LX, QB] = 0, [LX, IY] = [IX, LY], LX(AB) = (LX A)B + ALXB, LαX+βY = αLX + βLY

The other expected formulas [LX, IY] = I[X,Y ], [LX, LY] = L[X,Y ]

These hold by the replacement of  with[X, Y ]
[X, Y ] := (X1KY′ 1 − Y1KX′ 1, X1KY′ 2 − Y1KX′ 2) Lie bracket!

Y′ 1 = Y′ 1(K )
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KBc manifold 1/2

The new triad  also forms KBc algebra ! 

Therefore, using a function  and solving 

give various KBc algebra.

(1 + LX)(K, B, c)

ξ(s) = (ξ1(s, K), ξ2(s, K))
d
ds

(Ks, Bs, cs) = L(s)
·ξ(s)

(Ks, Bs, cs), (K0, B0, c0) = (K, B, c)

(K, B, c)

(Kδs, Bδs, cδs)

L ·ξ0

(Ks, Bs, cs)L ·ξδs

Ks = eξ1(s,K)K, Bs = eξ1(s,K)B, cs = e−iξ2(s,K)ce−ξ1(s,K)Bceiξ2(s,K)

The solution only depend on the end point

・・・
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KBc manifold 2/2

Many different triads of KBc are obtained:

K(ξ) = eξ1(K)K, B(ξ) = eξ1(K)B, c(ξ) = e−iξ2(K)ce−ξ1(K)Bceiξ2(K)

KBc manifold 

• Points                              different KBc triads 

• Coordinate                       ξ = (ξ1(K), ξ2(K))

 are generalized onto KBc manifoldQB, IX, LX QB, I(ξ)
X , L (ξ)

X

regarding   
as the fundamental triad

(K(ξ), B(ξ), c(ξ))

ξ = (ξ1(K), ξ2(K))
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Classical solutions on KBc manifold

If  is a classical solution, then  is again a classical solution.Ψ Ψ(ξ)

Ψ(ξ) := Ψ
(K,B,c)→((K(ξ),B(ξ),c(ξ))

A classical solution  is extended to the quantity on KBc manifold:Ψ

However,  is gauge-equivalent to , If   
can be connected to  with a continuous curve.

Ψ(ξ) Ψ (K(ξ), B(ξ), c(ξ))
(K, B, c)

KBc manifold

・

・
(K(ξ), B(ξ), c(ξ))

(K, B, c)
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Wilson line on KBc manifold

Wilson line in CS theory

WC = P exp [∫C
Aμ(x)dxμ] = P exp [∫

b

a
dt i ·x(t)A(x(t))]

the interior product on M3

By analogy with CS theory…

WC = P exp [i∫
b

a
dt I(ξ(t))

·ξ(t)
Ψ(ξ(t))]

ghost number 0
・

・

ξ(a)

ξ(b)
Ψ(ξ(t))
・ ·ξ(t)

Some similar properties to the ordinary Wilson line hold for the KBc version.
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Summary
The construction of KBc manifold (top-down) 

1.  form KBc algebra. 

2. KBc manifold 

            point : ,           coordinate :  

3. Tangent vector , interior product  and Lie derivative  can be properly defined.

K(ξ) = eξ1K, B(ξ) = eξ1B, c(ξ) = e−iξ2ce−ξ1Bceiξ2

(K(ξ), B(ξ), c(ξ)) ξ = (ξ1(K), ξ2(K))

X I(ξ)
X L(ξ)

X

Conclusion 

• Classical solutions are extended onto KBc manifold. 

• Wilson lines are defined on KBc manifold.
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Outlook

• The physical meaning of KBc manifold 

Can  be regarded as  in another BCFT? 

→ The relation between KBc manifold and BCFT 

 

• Wilson loop 

Wilson loop cannot be naively defined by analogy with CS theory. 

Wilson loop requires an operator which has the cyclic property.

(K(ξ), B(ξ), c(ξ)) (K, B, c)

One string vertex     does, but needs ghost number 3.∫


