Interior Product, Lie derivative and Wilson line in the $K B c$ sector of Open String Field Theory

Daichi Takeda (Kyoto Univ.)
Based on arXiv: 2103.10597 with Hiroyuki Hata

August 27th, 2021
Strings and Fields @ YITP

The similarities between Witten's open SFT and Chern-Simons theory

Any other correspondence?

Introduction of the notion of the manifold to $K B c$ sector

- Classical solutions on the manifold
- Wilson lines on the manifold

Contents

- Witten's open string field theory
- Classical solutions
- KBc manifold and Wilson line
- Summary

Contents

- Witten's open string field theory (3)
- Classical solutions
- KBc manifold and Wilson line
- Conclusion and outlook

Open string field

Dynamical variable Ψ

$$
\begin{gathered}
\hat{X}^{\mu}(0, \sigma)|X\rangle=X^{\mu}(\sigma)|X\rangle \\
\downarrow \\
\Phi(X(\sigma))=\langle X \mid \Phi\rangle \leftarrow \text { A state of world-sheet BCFT }
\end{gathered}
$$

State-operator correspondence

$$
|\Phi\rangle=O_{\Phi}(0,0)|0\rangle
$$

$$
\tilde{z}=\frac{2}{\pi} \arctan z \quad \sqrt{7}
$$

sliver frame
$\Psi:$ A composite operator in sliver frame
ghost number 1

One string vertex (Witten's integral)

One string vertex

Correlation function with identification of left- and right-half string

Witten's action

Witten's action
BRST operator

$$
S=-\frac{1}{g^{2}} \int \underbrace{\left(\frac{1}{2} \Psi Q_{\mathrm{B}} \Psi+\frac{1}{3} \Psi^{3}\right)}_{\text {ghost number 3 }}
$$

Propagator

$$
\frac{1}{2} \Psi Q_{\mathrm{B}} \Psi
$$

Vertex

Contents

- Witten's open string field theory
- Classical solutions (2)
- KBc manifold and Wilson line
- Summary

Classical solutions

$$
\begin{array}{cc}
\text { Witten's action } & \text { EOM } \\
S=-\frac{1}{g^{2}} \int\left(\frac{1}{2} \Psi Q_{\mathrm{B}} \Psi+\frac{1}{3} \Psi^{3}\right) & \quad
\end{array}
$$

Finding a classical solution =

Going to another perturbative vacuum based on the corresponding BCFT
ex) Creation and annihilation of D branes

KBc sector

The definitions of K, B and c

$$
K:=\int_{-i \infty}^{i \infty} \frac{\mathrm{~d} \tilde{z}}{2 \pi i} T(\tilde{z}), \quad B:=\int_{-i \infty}^{i \infty} \frac{\mathrm{~d} \tilde{z}}{2 \pi i} b(\tilde{z}), \quad c:=c^{\tilde{z}}(0)=\frac{2}{\pi} c^{z}(0)
$$

(in sliver frame)

$K B c$ algebra

$$
\begin{gathered}
{[K, B]=B^{2}=c^{2}=0, \quad\{B, c\}=1, \quad([K, c]=-\partial c)} \\
Q_{\mathrm{B}} K=0, \quad Q_{\mathrm{B}} B=K, \quad Q_{\mathrm{B}} c=c K c
\end{gathered}
$$

$$
\begin{gathered}
\text { Classical solutions have been found in } K B c \text { sector: } \Psi=F(K, B, c) \\
\rightarrow \text { Universal solution }
\end{gathered}
$$

EOM
$Q_{\mathrm{B}} \Psi+\Psi^{2}=0$

Contents

- Witten's open string field theory
- Classical solutions
- KBc manifold and Wilson line (8)
- Summary

The similarities between SFT and CS theory

Witten's action

$$
S=-\frac{1}{g^{2}} \int\left(\frac{1}{2} \Psi Q_{\mathrm{B}} \Psi+\frac{1}{3} \Psi^{3}\right)
$$

Chern-Simons action

$$
S_{\mathrm{CS}} \sim \int_{M}\left(\frac{1}{2} A \mathrm{~d} A+\frac{1}{3} A^{3}\right)
$$

Correspondence

$$
\begin{array}{rll}
Q_{\mathrm{B}} & \leftrightarrow & \mathrm{~d} \\
\int & \leftrightarrow & \int_{M} \\
\text { ghost } & \leftrightarrow & \text { form }
\end{array}
$$

$$
\Psi \rightarrow V^{-1}\left(Q_{\mathrm{B}}+\Psi\right) V \leftrightarrow A \rightarrow g^{-1}(\mathrm{~d}+A) g \quad \text { gauge transformation }
$$

Any other correspondence?
Yes (restricting to $K B c$ sector) [H.Hata, DT (2021)]

KBc interior product 1/2

Finding the interior product I in $K B c$ sector

Assumptions

- I has ghost number -1

- I holds $K B c$ algebra

$$
\text { ex) } I(\{B, c\})=I(1) \text { for }\{B, c\}=1
$$

- $I(A B)=(I A) B+(-1)^{|A|} A(I B)$

Same as the ordinary Interior product

KBc interior product 2/2

Then, I is characterized by a two-component function of $K, X=\left(X_{1}(K), X_{2}(K)\right)$

$$
I_{X} K=i B X_{1}, \quad I_{X} B=0, \quad I_{X} c=\frac{X_{2}}{K}+\left[\frac{X_{2}}{K}, B c\right]
$$

$$
X=\left(X_{1}(K), X_{2}(K)\right): K B c \text { tangent vector }
$$

The same relations as the ordinary one

$$
I_{X}^{2}=0, \quad\left\{I_{X}, I_{Y}\right\}=0, \quad I_{\alpha X+\beta Y}=\alpha I_{X}+\beta I_{Y}
$$

KBc Lie derivative

Lie derivative

$L_{X}:=-i\left\{Q_{\mathrm{B}}, I_{X}\right\}$

The ordinary one
$\longleftarrow \mathscr{L}_{X}=\left\{\mathrm{d}, I_{X}\right\}$

The same relations as the ordinary one with $\mathrm{d} \leftrightarrow Q_{\mathrm{B}}$

$$
\left[L_{X}, Q_{\mathrm{B}}\right]=0, \quad\left[L_{X}, I_{Y}\right]=\left[I_{X}, L_{Y}\right], \quad L_{X}(A B)=\left(L_{X} A\right) B+A L_{X} B, \quad L_{\alpha X+\beta Y}=\alpha L_{X}+\beta L_{Y}
$$

The other expected formulas

$$
\left[L_{X}, I_{Y}\right]=I_{[X, Y]},\left[L_{X}, L_{Y}\right]=L_{[X, Y]}
$$

These hold by the replacement of $[X, Y$] with

$$
\begin{gathered}
{[X, Y]:=\left(X_{1} K Y_{1}^{\prime}-Y_{1} K X_{1}^{\prime}, X_{1} K Y_{2}^{\prime}-Y_{1} K X_{2}^{\prime}\right) \quad \text { Lie bracket! }} \\
Y_{1}^{\prime}=Y_{1}^{\prime}(K)
\end{gathered}
$$

KBc manifold 1/2

The new triad $\left(1+L_{X}\right)(K, B, c)$ also forms $K B c$ algebra !
Therefore, using a function $\xi(s)=\left(\xi_{1}(s, K), \xi_{2}(s, K)\right)$ and solving

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left(K_{s}, B_{s}, c_{s}\right)=L_{\dot{\xi}(s)}^{(s)}\left(K_{s}, B_{s}, c_{s}\right), \quad\left(K_{0}, B_{0}, c_{0}\right)=(K, B, c)
$$

give various $K B c$ algebra.

The solution only depend on the end point

$$
K_{s}=e^{\xi_{1}(s, K)} K, \quad B_{s}=e^{\xi_{1}(s, K)} B, \quad c_{s}=e^{-i \xi_{2}(s, K)} c e^{-\xi_{1}(s, K)} B c e^{i \xi_{2}(s, K)}
$$

KBc manifold 2/2

Many different triads of $K B c$ are obtained:

$$
\begin{array}{r}
K(\xi)=e^{\xi_{1}(K)} K, \quad B(\xi)=e^{\xi_{1}(K)} B, \quad c(\xi)=e^{-i \xi_{2}(K)} c e^{-\xi_{1}(K)} B c e^{i \xi_{2}(K)} \\
\xi=\left(\xi_{1}(K), \xi_{2}(K)\right)
\end{array}
$$

KBc manifold

- Points $\longrightarrow \quad$ different $K B c$ triads
- Coordinate $\longrightarrow \xi=\left(\xi_{1}(K), \xi_{2}(K)\right)$
$Q_{\mathrm{B}}, I_{X}, L_{X}$ are generalized onto $K B c$ manifold $\longrightarrow Q_{\mathrm{B}}, I_{X}^{(\xi)}, L_{X}^{(\xi)}$

regarding $(K(\xi), B(\xi), c(\xi))$
as the fundamental triad

Classical solutions on KBc manifold

A classical solution Ψ is extended to the quantity on $K B c$ manifold:

$$
\Psi(\xi):=\left.\Psi\right|_{(K, B, c) \rightarrow((K(\xi), B(\xi), c(\xi))}
$$

If Ψ is a classical solution, then $\Psi(\xi)$ is again a classical solution.

However, $\Psi(\xi)$ is gauge-equivalent to Ψ, If $(K(\xi), B(\xi), c(\xi))$ can be connected to (K, B, c) with a continuous curve.

KBc manifold

Wilson line on $K B c$ manifold

Wilson line in CS theory

$$
W_{C}=\mathrm{P} \exp \left[\int_{C} A_{\mu}(x) \mathrm{d} x^{\mu}\right]=\mathrm{P} \exp \left[\int_{a}^{b} \frac{\mathrm{~d} t i_{\dot{x}_{\dot{x}(t)}}^{\uparrow}}{} A(x(t))\right]
$$

the interior product on M_{3}
By analogy with CS theory...

$$
W_{C}=\mathrm{P} \exp \left[i \int_{a}^{b} \frac{\left.\mathrm{~d} t I_{\xi(t)}^{(\xi)}(t)\right) \Psi(\xi(t))}{\text { ghost number } 0}\right.
$$

Some similar properties to the ordinary Wilson line hold for the $K B c$ version.

Contents

- Witten's open string field theory
- Classical solutions
- KBc manifold and Wilson line
- Summary (2)

Summary

The construction of KBc manifold (top-down)

1. $K(\xi)=e^{\xi^{1}} K, \quad B(\xi)=e^{\xi^{1}} B, \quad c(\xi)=e^{-i \xi^{2}} c e^{-\xi^{1}} B c e^{i \xi^{2}}$ form $K B c$ algebra.
2. $K B c$ manifold

$$
\text { point : }(K(\xi), B(\xi), c(\xi)), \quad \text { coordinate : } \xi=\left(\xi_{1}(K), \xi_{2}(K)\right)
$$

3. Tangent vector X, interior product $I_{X}^{(\xi)}$ and Lie derivative $L_{X}^{(\xi)}$ can be properly defined.

Conclusion

- Classical solutions are extended onto $K B c$ manifold.
- Wilson lines are defined on $K B c$ manifold.
- The physical meaning of KBc manifold

Can $(K(\xi), B(\xi), c(\xi))$ be regarded as (K, B, c) in another BCFT?
\rightarrow The relation between $K B c$ manifold and BCFT

- Wilson loop

Wilson loop cannot be naively defined by analogy with CS theory.
Wilson loop requires an operator which has the cyclic property.

One string vertex \int does, but needs ghost number 3.

